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Abstract—The elastic buckling and postbuckling behaviour of eccentrically stiffened plates are
evaluated analytically. The effects of lateral boundary conditions and of stiffener eccentricity relative
to the plate plane are emphasized. Attention is confined to global buckling; local plate and local
stiffener buckling effects are neglected. A simplified direct energy approach is used together with
Marguerre's plate theory. Critical buckling loads are found which are generally higher than those
obtained with a simple Euler column model. A simple closed-form solution is found for the
postbuckling curve which for small imperfection levels coincides with the classical Kotter solution.
The buckling behaviour is found to be asymmetric with loads generally in excess of the critical toud
in the advanced postbuckling region.

I. INTRODUCTION

Buckling of stiffenced plates is a subject of continuous interest due to their extensive appli-
cation in stecel structures.
The published results on buckling of stiffened plates follow three separate routes:

{1} the orthotropic plate approach;
(it) the column approach;
(iii) the discretely stiffened plate approuch.

An example of the first category is given in Mansour (1971). The stiffeners are smeared
out over the plate and the final nonlinear equilibrium and compatability conditions are
solved numerically. Examples of lincar buckling analyses of stiffened plates by the ortho-
tropic method may be found in Timoshenko and Gere (1961) and Troitsky (1976).

The column approach for stiffencd plate analysis is widely used in design codes due to
its simplicity, c.g. Det norske Veritas (1987). It has also been used extensively for studying
interaction phenomena between local and global buckling in stiffened panels (Koiter and
Pignataro, 1974 van der Neut, 1974 ; Tulk and Walker, 1976).

Several attempts have also been made to consider the discrete effects of the stiffeners
on the buckling behaviour. Notable among these are Tvergaard (1973), Ueda and Yao
(1983), Jetteur (1983). The present paper is a similar attempt along this “third route™ to
anulyse the stiffened plate considering the stiffencrs as discrete elements attached to the
plate along distinet lines. Only global buckling involving lateral deflections of the stiffencrs
is considered ; i.c. possible mode interactions between local plate/stiffencr and global pancl
buckling arc neglected, see Fig. 3.

By means of a dircct energy method, with a simple assumption for the out-of-pline
deflection form, a compact and very simple closed-form solution is obtained.

The main interest is on buckling of rectangular plates having width-to-length ratio in
the range of

dia = [0.5,2].

See Fig. 1(a) and (b) for geometrical properties of the stiffened panel.
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Fig. 1. (a) Stiffener geometry idealization; (b) stiffened panel geometry.

2. THEORETICAL MODEL

Fundamenials

The stiffenced plate model is particularly intended to simulate the behaviour of panels
uscd in steel ships and offshore structures. Stiffened panels in such structures are supported
laterally by a stiff system of cross-frames and longitudinal girders. The pancels normally span
scveral bays and the stiffencrs run continuously through cut-outs in the webs. A consequence
of this lay-out is that the lateral support is provided at the edges of the plate itself on all
boundaries. This will be shown to be a significant difference from the normal assumption
of luteral support of the neutral surface of a stiffencr/plate combination (sec Fig. 2).

Buasic assumptions

The stiffened panel considered is shown in Fig. 1(a) ; the stiffeners and their attachment
to the plate are shown in Fig. 1(b). The height of the stiffeners is assumed to be an order
of magnitude larger than the plate and flange thicknesses, and the web's middle plane is
attached to the plate’s middle plane.

The plate theory used is due to Marguerre (1937). Thus the membrane strains of the
middle plate plane are taken to be

N
£y =, +wd 4w w,
| S
(2 = l'lz + 2”'.3+W'0'2H"2
Vi FULHU HW W+ W Watwo W N

where u, v and w are the additional displacements of the plate’s middle surface in the x,,

X

Neutral ptane

x}\%et —x,

Physical ptate-plane,lateral support
Fig. 2. Lateral support conditions.
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Fig. 3. Stiffened plate models, global buckling mode. (a) Present stiffened plate model ; (b) column
model (Perry Robertson).

x;and x; directions respectively, and wy is the stress-free initial imperfection. The bending
strains are given by

Ky = —w,,
Ky= —Wg,
Kip= =W, (2)

The Love -Kirchhofl assumption is taken to be valid also for the stiffeners. This leads to a
stimple relation for the strain at a given point

&y =& —.‘,‘JH"”
£1= £, =X W,

Tia—2Xw . 3)

~
-
il

It 1s emphasized that the relation for £, in eqn (3) is only an approximation for the
strain distribution in a stiffener. However, it is thought to be sufficiently accurate for the
present problem in which local plate/stiffener buckling is neglected.

Strain energy
The strain energy of a three-dimensional, lincar-clastic, anisotropic medium is gen-
crally expressed as (Brush and Almroth, 1975)

U= ,J“ dv @)

in which 4, and £, represent the stress and strain tensor components respectively at a given
point. Applying the normal thin-platc assumptions, namely Hooke's law for planc stress in
the plate and uniaxial stress distribution for the stiffencrs, this expression can be rewritten
as

E s . l=v_, E{ .,
U= «Zﬂ‘:—v—ﬁjr (1:;+c§+2w:,f:3+ 5 *,q;) dv+ ;J:‘ g drv. (5)

Integration is taken over the initial plate volume ¥, and stiffener volume V. Substituting
eqn (3) into the expression for the strain energy eqn (5) gives for U,
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Fig. 4. External force system.
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An examination of this cxpression for the strain energy reveals a non-zero coupling
term between out-of-plane deflection w and in-planc displacement . It originates from
the basic assumption of lateral support along the plate edges and demonstrates that the
conventional first order upproximation in plate theory of decoupled bending and membrane
strain cnergies does nol generally apply for stitfened plate and shell structures.

Since only global buckling s considered herein, some further simplifications were
introduced with respect to the strain energy calculation of the stiffeners. Physically this
simplitication amounts to lumping all the stiffener material onto the vi-axes (in particular
the flange was considered as a material point). In this way their sideways bending and
torsional stiffnesses were conservatively neglected,

External loading

The stittened panel is subjected to a uniaxial foading in the stiflener direction. In order
to facilitate a type of external loading which is compatible with the boundary conditions,
the external loading is split into two separate independent systems

(i) the plate foad P,

(1) the stiflener forces P, = 1.2,... N
where Vs the number of stiffeners (see Fig. 4). This splitting of the external load is cructal
in the present analysis as it provides a consistent caleulation of the external eacrgy as
explained below.

Compatubility and constraint conditions
Murguerre’s plate theory gives the following compatability condition between out-of-
plane and in-plane deflections for plates.

ViF = El{wy+ “‘).:s: + Wy 1We 22— “"(:u: = (wo+w) (g + 1) s (7

Here Fis the Airy stress function defined as
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g.=—F,..

g,.0.. and o, are the membrane stresses in the plate plane, x, = 0.

Compatbility between plate and stiffeners is ensured by prescribing the same strain
distribution in the plate and stiffeners along their junction lines. This last constraint makes
it possible to express the plate force in terms of the stiffencer forces. A consequence of this
is that the redistribution of stiffener forces transversely is coped with.

External encrgy

The splitting of the external loading into two separate sets ot loads makes it possible
to consider the geometrical fact that the ditferent stitfener forces produce different amounts
of external energy. This is due to the different angle rotation at the support of the stiffeners
{sce Fig. Han. i.c.

O, =0,(x.). i=1.....N({ not summed). 9)

Simply supported boundary conditions ensure a uniform stress condition along the
height of the stiffeners at supports. Thus all stiffener forces act during deformation at the
sime distance e, from the plate plane (Fig. 4(b)). The cxpression for the external encrgy
reads

N
= -2 Z Pou, —P.u

=1

. (s.p not summed). (10)

Here w, is the in-plane displacement of the different stitfeners evaluated at the position
Xyo= e, (atsupporl xyo= 0, vy = a). 1, ts the in-plane displacement of the plate edge which
is constrained to remain straight during deformation. The Love Kirchhott assumption
feads to the final expression for the external energy

N
T=2Y% Pew,—Pu, (snot summed). (1

=1

wy i evaluated at diserete stiffener positions x,, and P is the total foree acting in the panel,
e,

N
P=P+3 P, (12)

i1

Deflection form bounduary conditions
The results presented are based on a very simple assumption tor the lateral deflection
forms. Additional out-of-plance deflection wis taken as

oon oo
W=, sin - .x, sin - x,. (13)
a d

The geometrical imperfection is taken in the same form as

.. n . m
Wy =0 SN -X; SIn - X, (14)
a d

This corresponds to the first term in a general Fourier series for deflection description and
satisfies the condition for simply supported edges. Then w ;= 0 along the cdges leads to
a uniform strain distribution over the stiffener height at support, as previously stated. The
mechanical boundary conditions ensurc equilibrium between external and internal forces
in the following form:

SAS 25:7-D
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Fig. 5. () Buckling cocllicient; (b) postbuckling cocllicient, for example ¥V = 6, ¢, = 0.3, 4, = 0,
it ~ 15,

N N
P,,+Z P, = ~£ o, df'—'z j; a, dA

[ 1=l

in which we prescribe (Fig. 5(b))

PI’= “J‘ g, dA
1,

P,

i

~J a, dA, atstiffener positions x,,.
4,

Integration is taken over the plate arca A, and stiffener cross-sectional arcas A,
Moment equilibrium about x; = 0 at support is ensured if

P.e, = —-J- o,xy dd, at stiffener positions x,,.
A,

This gives for ¢,

e, = (%hzf‘.‘*'b/f/'h)//‘,_

(15)

(16)

(n

(18)

For the intcrnal stress distribution positive stresses are in tensile and for the external toading
positive forces are in compression ; see Fig. 4(b). These prescribed mechanical boundary
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conditions are essential for the results as found and they are thought to represent a realistic
set for practical application for a continuously stiffened panel.

3. ANALYSIS

Substituting the deflection forms of eqns (13) and (14) into Marguerre's compatibility
equation for the plate, eqn (7). gives the following solution for Airy’s stress function.

N Et* . . dY 2 - 2n
F= —!xjo o+ = (20, +ui) (—) cos —nx3+<3> cos —x; |. (19)
a d d a

32

oy 1s the average stress in the plate. Equation (19) gives. by applying the definitions of eqn
(8) the following form of the membrane stress distribution tn the plate

th t ; ey v
o= —a0un— —E| -] Q2EE+E7) cos —x,

a: =0, (20)

=" 2n

There are consequently no shear stresses in the plate; the stresses vary only normal to the
direction in which they act. Applying Hooke's law for plane stress gives the corresponding
membrane strain distribution

There are no shear strains in the plate and the normal strain distributions vary both
longitudinally and transverscly.

From Marguerre's kinematic relation, eqn (1), eqns (13) (14) and (22), the relative
cnd-shortening of the panel is

a 1 nZ . s 12
ulx, =a)—u{x, =0) = J; wu, de, = - L;ama— —§(2gg+§“)(‘—1>a
(=)= = 0) = | 2 dvs = Lonad= gz 4 L) a (23)
tlx; =d)—r(x; =0) = 01.: -‘2—E‘7m r (2¢ < d a. <

It is noted that « and r evaluated at the edges are constants.
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This tllustrates that the conditions of straight edges remaining straight during defor-
mation 1s satisfied and 1s a direct consequence of the prescribed compatability conditions,
egn (7). and out-of-plane detlection form. egn (13).

Defining the relative scaled shortening of two opposite plate edges Ay and A as

x, =0
—_ lf(,,‘._‘____); wx, =a) =0
a

A= ﬁ(,:f}_"_fi)l: (v =d) =0 (24)

The mteresting cquation is the fiest inegns (23) and this is alternatively written
SRR S 2 W
o = LN - {252+ 87). (26)
8 «

The strain distribution along a junction line of stiffener and plate in the position xy, ts,

direetly from eqn (22

2 i M 3 AW b :
£y, = - : Ty " (&3 4+37) ! cos =" Vs, ¥ ! cos T x 27
o U og e t Td o a -

Then the expression for a stitfencer foree is

[)\l

il

—J Fe(x, =0)dA
1,

S, (Y 2n A
P, = Ao+  (25E+E57) COs Xy, — ¥ LA, (28)
8 a d d

P.=Y P, (29)

n? . AN
P.=Nda,,— - (2EE+E) N\’( )—}-( ) Ed..
8 o «

In this way the average stress in the stiffened panel g, is defined as
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P (30)

o, = -
nt NA +de

where P is the total force.
o, may be expressed as a function of the average stress in the plate o, defined as

P 3N

in which the area coeflicient g, is introduced (sce Appendix for definition).

For no stiffeners (¢, = 0) g, = 00.
This gives the final load-shortening -deflection-relation as

. n Gy Tr  xl ey a N[t
o, =LA~ B2+ ay gt H—N Il (33)

8

By satisfying the compatability conditions tor the plate it is possible to climinate the in-
plane displacements 1 and ¢, This simplilics the final result considerably and the expresston
for the potential energy is expressed as a function of the single out-of-plane coordinate E.
Potential energy
V=U+T. (34)

After substituting the stress and strain distributions the expression for }7can be written in
the following compact form (per unit plate volume)
2 +h Q35+

Vo= k:“p|(255:+é:)+/’1|‘::+b|||§(-—s:

The coctlicients & b, ;. b, and b, are given in the Appendix.

4. RESULTS
For convenience the subscripts , and | for load in stiffencr direction are omitted in the
presentation of the results,
Applying the principle of stationary potential energy gives the following closed-form

solution for the equilibrium path:

T43TE+25Y) (35)

P
Lty

- l4+a,(E+18) +ux(&
b E-+[ (S+35) +aa(

where a, and «, are the postbuckling coetlicients given by
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and o, is the critical stress.
The postbuckling coefficients have the simple form

48 hdsh

a; = — —(l—vHv- ==
‘ - t

W
3l —-vl)(d): { RETEIN 2 a¥ N-—u, A AN 17
W T e b - RT3 N —_ - - S e .
CEIT S\ e " GHANG)T N N (7

Expressions for the geometrical coetlicients ¢ . ¢, . a, and  are given in the Appendix.

Equation (35) resembles the Koiter solution for single mode buckling if the second
order ¢ffects from geometrical imperfections are neglected. The Koiter solution reads (Dym,
1974):

(1+a, S +a, 3% {3R)

£y
4w

<

Thus the present solution indicates more optimistic results for imperfect panets than the
asymptotic Koiter solution.

Critical load
The critical buckling stress is found as

n Y
=Cc 39
” C!?(l—v")(d) 9
where
N —u)
- YT (
C Nta W (40}
and

13 . ! M ] M
g,:(q+£-)+12(l—-v‘)(N+i)(‘>(I)Q‘h- =
d a/ \t1

¢, is given in the Appendix. In eqn (39} the reference will be € = 4 corresponding to an
unstiffened square plate (¢, = 0).
An alternative expression for the critical stress of eqn (39) 18

nt [(hY
.= K = E() (42)

where
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| Nl=a)[ [t} aY ¥ s .
K—-‘(l—\':) Nta, [(E) <l+<2)>+l-(l-\ )(N+l)¢,]. (43)
A necessary condition for eqns (39) and (42) to be valid is
L 20—V D (B, > 3; a4)
+ 1= ) 7 a\d (

corresponding to a single wave in the x,-direction.
The buckling coefficient K is shown graphically in Fig. 5(a) for the case of

N=¢6

a, =0.3

a, =0.0

h

;=15 (43)

A closer examination of eqn (43) shows that it consists of two terms. Their origins are from
the bending stiffness of the plate and stiffeners, respectively. It is important to note that the
contribution from the stiffencrs results from the bending stiffness of each stiffencr about
the plate plane and not about their own or combined section’s neutral axis. This is duc to
the fundamental lateral support conditions implemented in the plate plane. For dominating
stiffener contribution A simplifics to

N N+
S = . - 2
A N+a,[ N “+ "’:| (46)

which further for ¥ » | (wide pancls) approximates to (arca cocflicients a,, ¢, given in the
Appendix)

K =u,+2q,. 47

For comparison is given the classical column (Euler) formula (Fig. 4(b))

oy = n25<f)' (48)
4

where ¢ is the radius of gyration of the stiffener/plate section. If the stress variations over
the plate and flange thickness are neglected consistently with the present model, eqn (48)
is trunsformed to the same format as eqn (42) leading to

n [hY
oy =K Y E((«I) (49)
where
K=g,-gi (50)

and
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g, =d +=2d

i +a)). (31

il

Note that these tormudas are valid for a panel with an equal number of stiffeners and plute
elements [model used in Det norske Veritas (1987)].

For wide panels with .V > 1, expressions for K from eqns (47) and (30) are directly
comparable. (For .V » |, wide panels, there is no distinction between a. o, and o, o,
respectively.) It is seen for small stitfening ratios (a.. ¢, are small) that the column tormula
and the present coincide. while for larger area ratios the difference in the buckling coetlicient
K will be significant. This is consistent with the fact that the difference in calculating moment
of inertia about the cross-section’s neutral axis and the plite plane respectively increases as
the stitfening increases.

A stilfened panel in the present context consists of one plate element more than
stiffeners. so in order to compare eqn (50) with the present formula (eqn (43)) an arca
correction s necessary.

Then in Fig. S(a) is also shown o} where

o

ot = ,\'-+(1‘
N+

Gy (52)

where

&= N+ua, :) (54
= Nl (gr—y?2). )

The horizontal asymptotes in Fig. 5(a) correspond to column buckling which dominates
for wide panels v > 1. For d'u < | the “plate effect”™ becomes apparent, especially so for
light stiffening.

Posthuckling beharviour

From the form of the equilibrium path given by eqn (33) it is clear that the buckling
behaviour is asymmetric. The postbuckling coetlicients ¢, and «, describes the slope and
curvature respectively of the load-deflection curve at buckling. a, takes always negative
values indicating an initially unstable behaviour when the panel buckles in the stilfener
direction. The physical explanation for this is that stiffeners buckling in the stiffener direction
will lengthen in the immediate vicinity after the bifurcation load, relative to the unbuckled
stiffener at o, Subjected to compression this is a condition the stitfeners seck to avoid. Then
just after buckling the stiffener will exhaust this elongation preferring an unstretched. or
rather, compressed state. This leads to the imitial unstable behaviour before higher order
membrane effects in the plate stabilize the response. For pancls buckhing in the plate direction
the stitfeners are at buckling shortened. which s a state that will prevail during turther
compression. Thus the behaviour in this direction is stable.

For some special geometries (in which only one stitfener is present) the cocflicient o
takes negative values. Though for practical geometries its numerical value will be small at
the same time as a, s small, This indicates then an almost neutral behaviour.
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Fig. 6. Non-linear response of perfect and imperfect stiffened plates. (a) g, < 0. a; =0: (b a; <0,
>0 (Na, <0,u, <0,

The possible equilibrium curves are summarized in Fig. 6. Case (b) corresponds to the
most practical situation for stiftened pancels and illustrates the pancls” ability to carry loads
in excess of g, for large deflections.

[t is noted that the present solution gives tor an unstiftened (¢ = ¢, = ¢ = 0) square
plate symmetric behaviour with postbuckling coctlicients

a; =10

a, = (1 =v?).
This resembles the “classical solution™ given for example in Dym (1974),

The postbuckling cocllicients ¢, and «, (cqns (37)) are shown graphically in Fig. 5(b)
for the example given by egn (45). Related to the results shown for the critical stress in Fig.
5(a) this shows that for d/a < | the obvious “plate effeet”™ raising the critical stress is
accompanied by aninitial unstable postbuckling behaviour. For more wide panels dfa > |
the postbuckling will be more neutral indicating the “column contribution™ to be an effective
limit for the clastic buckling capacity.

Inperfect panels

For panels with geometrical imperfections the equilibrium curves are illustrated in Fig.
6 as dotted hines. When o, > 0 (which is the most practical case) there exists for small
imperfections £ local limit load a, less than ¢, ; a, < o, as indicated in Fig. 6. An cxplicit
expression for the limit load o, is not found since it involves the solution of a third-order
cquation

L&+ 8+ [iE+ S =0. (55)
A notable feature of the equilibrium path for imperfect pancls exists in this case («, > 0).
This consists of a continuously rising load -deflection curve for a geometrical imperfection
beyond a critical value, 1.e. for
>80 (6 >0). (56)
The cubic form of eqn (55) makes it impossible to solve for &, explicitly.
Edge moments

A further consequence of the assumed lateral boundary conditions is that they lead to
cdge moments in the stiffeners. By using again the column model as a reference it is natural
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Fig. 7. End-moments reference.

to evaluate the edge moments about the neutral axis of the combined stiffener; plate section
located a distance ¢! trom the plate plane (Fig. 7). The moment s

N
M=Y Pe,—e)—Pu (57)

=1

Substituting tor P, and P, gives
-~ { F iR

. N+, v +<(/)’) 5
b= ol =y , A . 3
‘o . V) N a, G2

The moment M ois defined as
M. =Pl (60)
where

P.o=aldi+NA). (61)
Due to the sign convention used (Fig. 7) the moment will always take negative values, that
is for perfect panels (& = 0) the moment works always in the sume direction independent
of the buckling direction, i.e.

(1) it stilfens the response when the panel deflects in the plate direction ;

(i) it softens the response when the panel deflects in the stiffener direction making the

situation unstable.
This is consistent with the postbuckling behaviour as explained.
Example

For illustration the postbuckling behaviour of a specific example is evaluated. The
stiffenced panel analysed has the following geometry

“«
fl
>
I
[V
I
=
tod
f

a, = 0 (flat bar). (62)

This gives for the postbuckling coethicients

—0.0237
0.0040

a4,

il

as
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Fig. 8 (1) Load deflection curve: (b) load end-shortening curve, for example NV =6, i1 = 15,
a, =03 du =1 a =0t bar).
¢, = —0.0016
d. = 0.0057. (63)
The equilibrium solution is
a E - 4T 2 T 452
= T+ a G+ +a (ST + 325+ 20))] (64)
AN
and the load-shortening deflection relation is
a P c
= +d(2E+E0). (63)
Ao a,
The moment-deflection relationship is
M N
v = (253 +27). (66)

(Expressions for the postbuckling cocetlicients a, «,, ¢, and o, are given in the Appendix.)

Equations (64) and (63) in which ¢ is cross-climinated are shown in Fig. 8(a) and (b),
respectively. Equation (66) is shown in Fig. 9. All relations are shown for three diflerent
impertection levels,

005

MM,

-003-

: !
-0t
° -020 -10 o] 10 20

Fig. 9. Moment deflection, for example &V = 6, bt = 15.a, = 0.3, da = |, a, = 0 (flat bar).
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Also included is the perfect solution £ = 0. though this is not distinguishable from the case

for & =0.001. The asymmetric nature of stiffened plate buckling in the global mode is
clearly illustrated by this example.

5. DISCUSSION

The present approach for stiffened plate buckling is based on assumptions of which
the most important concern lateral support conditions and the assumed torm for the out-
of-plane deflection.

Lateral support is provided at the physical plate edges all around the plate and not in
the normally assumed neutral plane of the combined plate stitfener section. These special
support conditions are considered to be realistic for panels in which the stiffeners are
continuous (through cut-outs) over several bays as typically occurs in steel ships and offshore
structures. [t retlects the physical plate planes” ability to transmit stresses as opposed to the
“fictive ™ neutral plane. The present boundary conditions lead to a coupling between in-plane
and out-of-plane displacements which is the indirect cause of the asymmetric behaviour.,

The stitfener geometry analysed consisting of flanged or flat bar profiles welded to the
plate (Fig. 1)) is also typical for steel ships and offshore constructions.

The crude assumption for the torm of the out-of-plane deflection feads generally to
optimistic results. A more complete series expansion will indicate the magnitude of crror
introduced. The present approximation improves as the stiffening ratios and dfa ratio
reduce.

An important consequence of the present results with respect to asymmetrie clastic
buckling behaviour found is that it will fead to buckle localizations in structures consisting
ol several bays of stitfened pancels. Signs of such behaviour may be seen in Smith (1975) in
which full-scule test results are presented. [ncluding more effects from c.g. local buckling,
plasticity, different torms of geometrical imperfections, cte., complicates the picture. The
nature of localization of stiffened multispan panels is very similar to the focalization in
unstitfened plates (Tvergaard and Needieman, 1980).

6. CONCLUSIONS

Fhe clastic buckling and postbuckling of stiflened plates have been eviuated analyti-
cally. Marguerre’s plate theory is applied and the stiffeners are considered as discrete
clements.

Only global stiffener buckling has been considered ; local plate/stiffener buckling and
possible mode interactions being disregarded. Nevertheless, the study of an isolated global
buckling deflection has practical interest and reveals new results.

The elastic buckling stress is generally higher than caleulated for the wsual Evler column
model in the following sense.

(1) The difterence is most notable for panels with a length exceeding its width; then
the plate effect is signilicant,

(t1) The difference is also marked for wide pancels and increases rapidly for increasing
stitfening ratio. For wide pancels (e > 1, N > 1) a critical buckling stress increase of 8%
is noted already for a, = 0.1 (¢, = 0). The present wide panel solution is too optimistic.

The postbuckling shows asymmetric behaviour with the initial unstable equilibrium
path for pancls buckling in the stiffencer direction. For larger deflections the behaviour is
generally stabilized due to nonlincar membrane effects in the plate leading to possible loads
in exceess of the eritical load. Important conclusions concerning the postbuckling behaviour
are as follows.

.

(1) For panels in which the “plate effect™ is notable (dia < 1) the postbuckling behav-
tour s generally most unstable inttially. This is, however, cffectively compensated due to
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significant nonlinear membrane effects leading to a relatively suff response after buckling.
Stiffness sensitivity due to geometrical imperfections is small.

(i) For wide panels in which the “column action” dominates the postbuckling behav-
iour is more neutral. Stiffness reductions due to geometrical impertections are more marked.

It is emphasized that the present closed-form solution is based on a crude approxi-
mation for the deflection surface. This is done in order to highlight the qualitative buckling
behaviour of stiffened plates in a simple way capturing the most important parametric
dependencies which are otherwise hard to find.

Thus the results are generally optimistic both with respect to the biturcation load and
postbuckling behaviour.

The theoretical foundations are. however, quite general and. with for example a double
Fourier expansion of the lateral deflection surface. the present model may be consistently
extended to include effects such as shear lag and plate-stiffener buckling interactions.
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APPENDIX
Natation
7 tength of stitfened panel
b distance between stilfeners
d total width of stitfened panel
h height of stitfener
h, total width of flange
t thickness of flange
t, thicknes of web
A, stitffener area, A, = he + b, 0, Fig. 2
N number of stiffeners
E Young's modulus of clasticily
v Poisson’s ratio (v = 0.3 in examples)
e, cccentricity of stiffener forces. Fig. 7. e, = (Mt + b,1,h)/ 4, from moment equilibrium
¢ eccentricity of neutral plane for combined stiffener plate section (Figs 4. 7)
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